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THE METHOD OF PROJECTION AND DECOMPOSITION OF ANALYTICAL FUNCTIONS 
IN BOUNDARY-VALUE PROBLEMS OF ELASTICITY THEORY* 

A.M. TSALIK 

A technique is proposed for reducing boundary-value problems of 
elasticity theory in multiply connected regions to a system of algebraic 
equations. The technique is based on the projection method for 
analytical functions of a complex variable combined with decomposition 
of the original region. The starting equations are provided by the 
Laurent series expansion of the necessary and sufficient condition of 
analyticity of functions. The coordinate functions are the terms of the 
Laurent series for the required potentials of elasticity theory in each 
of the subregions obtained from the original region by decomposition. 
The proposed method avoids the construction of integral equations, while 
preserving the advantages of the boundary-element method. 

I. ~lyticity conditions. The necessary and sufficient condition for the function 
to be analytic in a given region B with the boundary OB may be represented in the form /i/ 

O B  $ - -  z 

I ¢ (t) ~ d t  = 0 (~ = t ~, ( t  - -  z~) 4 -* ,  k = O, t . . . .  ) ( t . 2 )  
Fig. 1 oB 

Assume that the given regi~ B = UB i is decomposed so that inside each subregion B i 
the function • (z) is representable by its Laurent series 

We assume that B is an arbitrary, closed, multiply con- 
nected region whose boundary OB satisfies the Holder con- 
diton (Fig.l), and the point at infinity does not belong to 
B. If {zm} are arbitrary points of the interior subregions 
that do not belong to B, then condition (I.I), after expansion 
in a Laurent series,can be replaced by an infinite system of 
equations for the analytical function ~, 

• ' = ~, ~ ~, (z - zmy + ~ e/(z - z,)' (I 3) 
~=1 8=--I s = o  

where M-~ 1 is the connectivity of the region B, zl is an arbitrary point of the subregion 
B ~. Analytical continuity conditions for ~ should be satisfied on the joining curves of 
the subregions. 

The functions in the expansion (1.3) are selected as the coordinate functions of the 
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pro3ection method. 

2. Mized problem o f  e l a s t i c i t y  theory .  
elasticity theory can be represented in terms of complex potentials in the form /2/ 

--flC~'--~¢=~u, ~=2G~ 

for the parts of the boundary on which the displacements are given and 

t 

ep ÷ t~" ÷ ~ = /, / = iI (Xa ÷ iYn)dt + C , 
t t  

The boundary conditions of the mixed problem of 

(2A) 

(2.2) 

for the parts of the boundary on which the stresses are given. Here ~ and ~ are the 
required analytic functions of a complex variable, t are the boundary coordinates, ~=(3-- 
4~) -t for the plane strain problem, ~ = (t + 0 ) ( 3 - - 0 )  -1 for the generalized plane stress 
state, G is the shear modulus, u is the complex displacement of the boundary points, and 
X n + iY, is the external load applied to the points of the boundary of B. 

The following conditions should be 

where the superscripts ~ and $ identify 
As we know /2/, Xn+ tYn =--id(@ + 

be rewritten as 
(¢ + ~' + ~)~ = (¢ + re' + ~): + V~* 

Using (2.1), we can rewrite the first equation in (2.3) in the form 

(~* (~ - ~t~' - ~))~ = (~ (~ - ~t~' - ~)), 

From (2.4) and (2.5) we now obtain the formula 

~ = a ~ '  + bt~ p +b~ ~+C~, C==C**~'(t+~')-x 
a = (f i ' /a'  + ~ / a ' ~ ( F / a '  + i /~ ' ) ,  b = ( ~ ' / ~ '  - -  ~ /=~ ) / (~% '  + t/~') 

Projecting Eqs.(2.1), (2.2), and (2.6) on to Eqs.(l.2), we obtain 

satisfied on the interface curves: 

(X~ + tY, ) '  = (X~ + tY,) ~ (2.3) 

the adjoining subregions. 
t~'+~)/dt, so that the second equation in (2.3) can 

(2 4) 

(2.5) 

(2 6) 

O B ,  t @B, s 

0 OB, t OB,  ~ 

( ~ = t  ~ , ( t - z ~ ) - ~ - l ;  t = l , 2  . . . .  , I ;  k = O , l  . . . .  ; m = i , 2 ,  . . ,  k ,M)  

(2.7) 

Changing to con3ugate variables in Eqs.(2.1), (2.2), and (2.6) and again pro3ecting the 
conjugate equations on to Eqs.(l.2), we obtain a second group of equations 

I (°~t~pt -- ~'t~i') ~ dt + f (~  + [q)~' + C1) ~ dt ÷ 
O B** O Bt  ~ 

, t 0 OB~ ~ OB, z 

( ~ = t  ~ , ( t - z .O-k -* ;  i = 1 , 2  . . . . .  I; k = O ,  l . . . .  , k; r e = l , 2  . . . .  M) 

(2 8) 

Here @B, ~ is the part of the boundary with given stresses, aBs ~ is the part of the 
boundary with given displacements, @Ba ~ is the interface curve between subregions B ~ and B J, 
and I is the number of subregions in region B. 

Replacing the boundary values of the analytical functions ~ and ~ with their correspond- 
ing reduced Laurent series expansions, we transform Eqs. (2.7) into a linear system of algebraic 
equations. Let 

M N -  1 N ,  

~'= ~ ~, ~:~(z--z~)'+ ~%(z--z,~ ~ (2.9) 
m=l 8=--1 s=0 
M --N, N, 

tn=l 8=--1 s = o  
M --N, N, 

m I s ~ - - I  s = o  
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Substituting the representations (2.9) into Eqs.(2.7) and (2.8), we obtain the linear 
systems of algebraic equations 

~A = ~ (2.~0) 

where A is the vector of the required expansion coefficients in (2.9), and T and F, respect- 
ively, are the matrix and the vector whose components, apart from a constant, are a com- 
position of integrals of the form 

I s (t - -  z,n) -~+~ t ~÷~ dt ,  I st  ( t  - -  z,n) -`÷~ ( t  - -  z , , , )  -~  dt ,  
OB ~ OB t 

I ( t - - z~r) - ' s ( t - - zm)- 'd t '  I t~+~(i--z ') 'dt  
OB* OB t 

( 2 . i t )  

etc. Here 8 is an integral exponent with values between the bounds of the reduced Laurent 
series, {s: --N,,N,}, and ~ is an integral exponent bounded by the number of equations in 
(2.7) and (2.8). In order to evaluate integrals of the form (2.11), it is better to use the 
equality dt =--im~l, where n is the outer unit normal to the boundary, and dl is an element 
of length of the boundary. In order to obtain a single-valued solution of Eqs.(2.7) and (2.8), 
it is necessary that C, = 0 or C~=0 and also 

(MN~ + N~ + I) = K 

The components of the displacement vector in our problem take the form 

M --N, 

. = Y, Y, (o~'q%.~' (z - zm)'  - ( f i ' .~L~ (s + t )  - I~*.~)  (z - z J )  + 
m = l  s=- - I  

/% 

Y, (~'q~ (z -~,)"-(frz%'(s + ~ ) - ~ , ) ( z - z , y )  
s=O 

(2.12) 

and the components of the stress field take the form 

M --Nt Nt  

~ x  + oY = 4 a ~  ( Z Z ~:~ (" - " , . r - '  + E ~ ,  (z - z , ) , - , )  
#%~I 8=--I s=~ 

M --N, 

~r - "x + 2,~xr = 2 (z ~', Y~ (s (s - t) ~,,~ (z - z. ,y- '  + 
m=l s=--I 

~ s , .  (,. __ Z,~)~-a) ~- y ,  ( $ (8  - -  t )  ~s  ('- - -  Zi) ~-~ + 8~a ('- - -  Z~)s-1)) 
s=O 

(2.t3) 

3. Torsio. of peiseatie eods. Introducing the torsion function ~, we reduce our problem 
to a Laplace equation. The shear stresses are related to the torsion function by the formulas 

• xz  - -  tTrz = OG ((a~/aX - -  ia~/oY) - -  ~ )  (3.i) 

where O is the torsion angle, and G is the shear modulus. 
We introduce the function 

0 = #q,18X -- ia~laY = 2a~l#z 

which is analytical, because 

~/ai = 2as~/a~i = 4v2~ = 0 

Formula (3.1) now takes the form 

~xz -- i~z = 8G (~ -- ~) (3.2) 

On the unstressed boundary @B of the region B, the boundary condition of the torsion 
problem is expressed in our notation by 

Re ((Txz -- ~,rz) -) = ~ Re ((~ -- ~) .) = 0 

or 

O n  + iffff = - - i  ( z~  - -  i n )  ( 3 . 3 )  

If the region B is decomposed so that B = •B i, then on the interface curves of the 
subregions B ~ and B J we should have the conditions of continuity of the torsion function 

~' = ~J (3.4) 
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and equality of the tangential pressures 

Re 6(~:xz - -  t V r z )  n ) '  = |:[e ((~xz - -  Vryz) n) J (3.5) 

Differentiating Eq. (3.4) along the interface curve with respect to the tangent to the 
curve, we obtain 

d~"  / d s  = d(~ J / ds  

o r  

( R e  ((Oq~/OX - -  ~ e p / O Y )  .Q)t = (Re ((Oq~/OX - -  t O ¢ / O Y )  z ) )  J 

where T is the unit tangent to the boundary. Hence, noting that T = --in, we obtain 

I m  (On)  ~ = I m  (JPn) ~ (3 6) 

Using (3.2), we rewrite Eq. (3.5) in the form 

G' Re (On) '  - -  G ~ Re ((1)n) ~ = - -  (G ~ - -  G:) I m  (in) (3.7) 

Thus, Eqs. (3.6) and (3.7) imply that the following condition should be satisfied on the 
interface curve : 

O f  n G ~ + G ~ G t - -  G J G'  - -  G J (I)Jn + (1)in - -  I m  (t-n) (3.8) 
G' 2G ~ G ~ 

that 

Here and above, n is the outer normal to the 3oining curve relative to the subregion B'. 
Substituting Eqs. (3.3) and (3.8) into conditions (1.2) for each subregion B i and noting 

dt =--ndl, we obtain the system of equations 

0 ,i OBl* 
G ~ _ G J (t 

- - i  ~_ ( t ~ - - t n ) ~ d l - -  ~_ ( t ~ - - t n )  d l  
2G' 

OB, ~ OJgt ~ 

(~ = t ~, ( t  - zm)-~- l ;  k = O, l . . . .  ) 

Here 0B, ¢ is the free boundary of the subregion B ~, and abe' is the interface boundary 
between subregions B ~ and B J. 

If the function ~ is approximated by the coordinate functions 

M --N, N ,  

¢ ' =  Y, ~ ¢ , ~ ( ~ - ~ ) ' +  Y , ¢ , ( . . - ~ , ) '  (3. io)  
m = l  S = - - I  S-----0 

then substituting the representation (3.10) into Eq.(3.9) we obtain a linear system of 
eql/ations A~ =/, where the elements of the matrix A and the vector f are given by (2.11). 

The shear stresses can be computed from the formula 

M --Nt N# 
(Txz - i~rz) '  = OG' ( Y, Y, ¢ , ~ ( ~  - -  z~)' + Y~ ¢~ (z - -  z,~' - -  ~) 

m = l  s ~ - - i  s ~ o  

The torsional rigidity of the bar is determined from the formula 

- -  t Im ( ( ~ x z  - -  i ~ v z ) ~ . d X d Y  = D 

B 
(3.11) 

where, by the analyticity of the function ~, the integral over the region has been replaced 
with a line integral over the boundary. 

4. Bemdi~ of composite Pods by u tl~2~ve~sa~ fore. Following Muskhelishvili /2/, the 
problem of the bending of beams by a transversal force with normal stresses 

= - - W x ( l - - s )  X / I y ,  a x  = ~ r  = 0  (4A) 

and zero shear stresses Txy can be reduced to the plane problem of elasticity theory. Here 
ol are the corresponding normal stresses, Wx is the transverse force parallel to the X-axis, 
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is the bar length, s is the coordinate along the rod axis, and Iy is the moment of inertia 
of the bar cross-section about the Y-axis. 

For cross-sections made of materials with different Poisson's ratios, the shear stresses 
can be represented in complex form as 

(ZXZ ÷ iTyz)g = -- WIGtJ? 1 (X~ ÷ Xo~ ÷ g~ (Z) - -  U~) (4.2) 

k , l = t ,  2, k:/=l 

The first formula (k = t ,  1 = 2) is written for the case of a transverse force parallel 
to the X axis, and the second (k = 2,1 = I) for the case of a transverse force parallel to 
the Y axis. Here X k is the required analytical function, U k are the displacements obtained 
by solving the so-called supplementary problems of elasticity theory /2/, X 0 is a particular 
solution of the Poisson equation, a is Poisson's ratio, and 

4a'~klOzO~ = (auk/oz + ouk/02 ) (t  - -  20)-* (4.3) 

s i n c e  

OU~/Oz+ OU~IO~ = (t  - -  ~) a -~ ( ~ '  + ~ ' )  (4.4) 

where ~ is the complex potential of the supplementary problems, we have 

X ~  = (t  - -  ~) ( l  - -  2~)-* ( ~ ' z  + ~ ) / 4  (4.5) 

These representations enable us to reduce our problem to a boundary-value problem for an 
analytic function with the following boundary conditions: 

on the free boundaries 

X~n ÷ X~n= ]~ (4.6) 

on the interface curves 

G ~ (X~n ÷ X ' ~ n / - -  G J (Xkn ÷ X~-'n~n) J = G'J* -- G~/J 

(Xt:n - -  X~n) '  - -  (X~:n - -  Xtrn) J = 0 

(4.7) 

H e r e  

- - / k  = Xo~ + g~ (z) - -  U~ 

T h u s ,  t h e  p r o b l e m  w i t h  b o u n d a r y  c o n d i t i o n s  ( 4 . 6 )  a n d  ( 4 . 7 )  f o r  t h e  a n a l y t i c a l  f u n c t i o n  
X h a s  t h e  same f o r m  a s  t h e  t o r s i o n  p r o b l e m  ( 3 . 3 )  a n d  ( 3 . 7 )  f o r  t h e  f u n c t i o n  ~ ,  d i f f e r i n g  
o n l y  by  t h e  r i g h t - h a n d  s i d e  o f  E q s . ( 3 . 8 ) ,  w h i c h  i n  t h e  p r e s e n t  c a s e  e q u a l s  - - I m  ((G~/~t--G:]~ J) 
n) The values of this expression can be found by solving the supplementary problems of 
elasticity theory using the equations of Sect.l. 

The solution of problem (4.6), (4.7), obtained in the same way as the solution of the 
torsion problem, gives the coordinates of the centre of bending of the cross-section (xk) 
from the formula 

x~ = I Im ((Txz + tTYZ)l z- dX dY (4.8) 
B 

where (TXZl-tTyZ)~ are the shear stresses produced by the transverse force along the Xz axis. 
Substituting (4.2) into (4.8) and applying the formula for passing from an area integral to a 
line integral 

I ](z'~)dXdY = + o !  (I](z 'z)dz)ndl  

we obtain 

x~ = ( 2 1 , ) - , Z  c '  ( I x~z~ + ((1 - ~)((  - 2~) 1~  , /4 + 
I O B  ~ 

(l  - -  ~) ~-1) eO~'z~/2 + ((i - -  ~) (i  - -  2a) - '  (~-l - -  (~--1) ~phZ~ - -  

( | -  ~) OC'Xp~E~,/2 -}-iI:-1 ( ( +  ÷ x,I,)z~2/2- 35 ' / ' 6  + ( - - l ) ~ z ~ 1 6 ) n  dl] 

(4.9) 
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The solutions of problems (4.6), (4.7) enable us to compute the directional shear rigid- 
ities of the region from the formulas /3/ 

(GF)~ = k ~ G F =  W~2/Jh ,  ]~ -= f I x x z  + ~xyzlh ~ d x  d Y  
B 

whence, substituting (4.2), we obtain 

(GF)~ = I,= (Z6' I IX~+Xo~+g~(z)--Ukl~dXdY) 
B 

(4.to) 

5. A bou~ of the method. Theorem. Let the boundary condition 

¢ = F (~, ~' ,  ~ ' ,  t) 

be given for the analytic function ~ defined in the multiply connected region B with 
boundary OB that satisfies the Holder condition. The function F satisfies the Holder 
dition 

I F ( t ) - - F ( t o )  I -<<A I t - - t  o I% ~ < i  

(5.1) 

t h e  
con- 

uniformly in ~. Let 

A = ~ *  - -  F (~*, ¢*', ~*', t) (5 .2 )  

be the boundary value of a function for which ~* is an arbitrary analytical function in the 
region B. 

If the following systems of equalities holds: 

I F~ d t  = 0 (~ = (t ~, k = O, 1 . . . . .  K) ,  ~ = (t - -  z.~) ~, 
OB 

k =  - - 1 , . . . , - - N ; m  = t . . . .  M) 

(5.3) 

where {zm} are arbitrary points of the interior simply connected regions that do not belong 
to the region B, then there exists a decomposition of B such that 

A = o (min  (1 t I -x-2,  I t - -  z,~ IN)) (5.4) 
m 

Proof. Consider the function 

q~ = f a (t -- z)-I dt (5.5) 
OB 

which is analytic at all points z ~ B. Since the function ~* 
we have 

is analytic in the region B, 

q~ = - -  I F (C~*, ~*, ,  ~*, ,  t) (t - -  z)-~ at (5.6) 
OB 

find 
By Laurent's theorem on the expansion of an analytical function outside the region B, we 

s - s  = y, y , ~ , ( , - , ) -  ,p,~ (5.7) 
r n = l  s = l  s=O 

where ~ma and ~, are the expansion coefficients of the function ~. 
By the Sokhotskii-Plemel' formula /i/, using (5.3), we obtain for the points 

1 l ~ s t-s 
"2-A+"~? '~t  o A ( t - - t ~ ) - l d t =  q~ms(t z"n) + cp, 

OB m ~ l  s-~Nq-1 I 

t~ dB 

whence 
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A < I (z~,)-* I I V (t) - F (to)) (t - -  to) -t' I I t - -  to I "-* d I t - -  to I + Z, + Z, < (5.8) 
o s  

( ~ t 0 - *  AR~ + I Z~ I + I Z., I 

Here R = max (t- ~) is the maximum distance between the points in the decomposed region. 

If 
R -.< (2.'tp.) t~ A-~o (rain ( ] t - -  z,n IN, I t I -K~))  (5.9) 

then inequality (5.8) gives the bound (5.4). The theorem is proved. 

6. ~haneP~a~ ~np~tat~on. This study has provided the basis for a package of programs, 
whose capabilities are demonstrated here by comparing the calculated and published values of 
the geometrical and rigidity characteristics of a number of test sections (Figs.2 and 3) and 
by reporting some new results on the characteristics of the blade profiles of wind-power 
installations (Figs.4 and 5). 

Fig.2 is a cross-section in the shape of a square ring 0.01 m thick and 0.i0 m on the 
external side; the ring has a cut in one of the sides. The coordinates of the centre of 
bending calculated from standard formulas /3/ for thin-walled elements and from formula (4.9) 
were found to be -0.112 m and -0.106 m, respectively; the torsional rigidity is 4.73xI~ Nm' 
according to the data of /4/ and 4.71x 1~ Nm' by formula (3.11). We also used formula (4.10) 
to find the directional shear rigidities (GF)x= 228.5 N, (GF)y=I75.6 N. The shear modulus 

was G = 3.98x1~ Nm z . For the cross-section shown in Fig.3 /4/, with the same shear modulus, 
the torsional rigidity was 1.17xI0 ~ Nm 2 by both formulas, and the directional shear rigidities 
were (GF) x = 527.8 N and (GF)y = 288.4 N. For this cross-section we also calculated the shear 
stresses at the interior points of the region. The graphical comparison of the numerical 
results shown in Fig.3 indicates that the data in /4/ are close to our data. 

Fig.2 

Y 

Y 

Fig.3 

Fig.4 Fig.5 

Figs.4 and 5 show the blade cross-sections of wind-power installations. The chord is 
B=0.30 m, the height is 0.072 m and 0.064 m, the wall thickness is 0.004 m and 0.006 m, 
respectively. For a shear modulus G = 2.65x10nNm 2, the coordinates of the centre of bending 
for the cross-section shown in Fig.4 are x = --0.0399 m, y = 0, the directional shear rigid- 
ities are (GF)A= 1.28X1~ N, (GF)y =9.39x10 ~ N, the torsional rigidity is D=l.63x106Nm 2. For 

the cross-section shown in Fig.5, the corresponding figures are z = --0.194 m, y=0.0293 m, 
(GF)x = 1.21xI~ N, (GF)y= 7.03x10~ m, D=I.83xI~ Nm ~. In all the cross-sections shown, the 

origin of the coordinates is at the centre of mass. 
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